Learning Sparse Image Codes using a Wavelet Pyramid Architecture
نویسندگان
چکیده
We show how a wavelet basis may be adapted to best represent natural images in terms of sparse coefficients. The wavelet basis, which may be either complete or overcomplete, is specified by a small number of spatial functions which are repeated across space and combined in a recursive fashion so as to be self-similar across scale. These functions are adapted to minimize the estimated code length under a model that assumes images are composed of a linear superposition of sparse, independent components. When adapted to natural images, the wavelet bases take on different orientations and they evenly tile the orientation domain, in stark contrast to the standard, non-oriented wavelet bases used in image compression. When the basis set is allowed to be overcomplete, it also yields higher coding efficiency than standard wavelet bases.
منابع مشابه
Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملBayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS BayeSian Learning of SparSe MuLtiScaLe iMage repreSentationS
Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both ...
متن کاملRobust Image and Video Coding with Pyramid Vector Quantisation
Most current image and video coding standards use variable length codes to achieve compression, which renders the compressed bitstream very sensitive to channel errors. In this paper, image and video coders based on Pyramid Vector Quantisation (PVQ) and using only fixed length codes are proposed. Still image coders using PVQ in conjunction with DCT and wavelet techniques are described and their...
متن کاملRobust image and video coding with pyramid vector quantisation
Most current image and video coding standards use variable length codes to achieve compression, which renders the compressed bitstream very sensitive to channel errors. In this paper, image and video coders based on Pyramid Vector Quantisation (PVQ) and using only fixed length codes are proposed. Still image coders using PVQ in conjunction with DCT and wavelet techniques are described and their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000